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THE ROLE OF MULTIPLE SCATTERING IN 

ONE -DIMENSIONAL RADIATIVE TRANSFER 


David Adamson 

Langley Research Center 


SUMMARY 


The usual methods of solving the radiative transfer equation yield answers which 
embrace all o rde r s  of scattering and thus shed little light on the underlying physical 

' 	process.  The present analysis examines the contributions of the various o rde r s  of 
scattering to the one-dimensional t ransfer  of radiation. In the one-dimensional case a n  
exact analytical solution exists and the problem reduces to that of expanding this exact 
solution in powers of the albedo for  single scattering. Formulas a r e  given which permit 
the calculation of any order  of scattering in an atmosphere of arbi t rary optical thickness, 
particle albedo, and asymmetry parameter .  The resul ts  should aid in identifying those 
physical situations where only the lowest o rde r s  of scattering play a significant role and 
where appropriate approximate methods might provide resul ts  of acceptable accuracy. 

INTRODUCTION 

If one seeks to determine the radiation reflected from o r  transmitted through a 
plane parallel homogeneous atmosphere (slab) by solving, in the usual way, the radiative 
transfer equation, the answer one obtains embraces  all o rders  of scattering. Ordinarily, 
this is all that is needed; however, such an approach provides little understanding of the 
underlying physical process.  The investigation reported herein provides a more detailed 
insight into the problem to the extent of identifying the contributions of the various orders  
of scattering to the transfer of radiation through a slab. 

Apart f rom this, the investigation has certain practical connotations. In some of 
the more complex problems of radiative transfer involving (a) striated atmospheres in 
which scattering properties vary with depth, (b) scattering particles comparable in size 
with wavelength, and (c) polarization, methods of successive approximation may have to 
be utilized. In several  of such methods (refs. 1 to 5), the successive iterations cor re
spond to the contributions of successive o rde r s  of scattering. In applying these methods, 
knowledge of the role of multiple scattering would clearly aid in making a preliminary 
assessment  of the rapidity of convergence of the procedure and hence the time and effort 
that would be needed to achieve a solution. Even in the case of simpler problems, 
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sometimes it suffices to consider only the lowest o rde r s  of scattering (primary, sec
ondary, o r  tert iary).  For these situations one can a r r ive  at an  answer of acceptable 
accuracy with a considerable saving of labor. Here also a knowledge of the role of 
multiple scattering would aid in deciding where the use of such approximate methods is 
warranted. 

In the cage of the t ransfer  of radiation through a homogeneous plane parallel atmo
sphere, even in the simplest  of cases  involving isotropic scattering, an analytical 
approach cannot be carr ied beyond secondary scattering (ref. S), and in order  to deter
mine the contributions of the higher modes of scattering, numerical procedures are 
required. Such approaches do not lend themselves to a systematic parametr ic  analysis 
to determine the dependence of the different o rde r s  of scattering on slab thickness, albedo 
f o r  single scattering, and asymmetry factor. In view of this fact, consideration has  been 
limited to the one-dimensional radiative transfer problem. For this case exact solutions 
exist  and the problem reduces to that of expressing the exact solutions as power series 
in the albedo fo r  single scattering. The formulas so derived permit the determination of 
the contribution of any order  of scattering for  any slab thickness, for a rb i t ra ry  albedo, 
and for a rb i t ra ry  asymmetry parameter.  

The nature of the radiative transfer problem is such that the resu l t s  of this one-
dimensional analysis might be expected to have more than simply qualitative relevance. 
In this regard it is to be borne in mind that the two-beam approximation (refs. 7 and 8), 
which is tantamount to a one-dimensional approach, has  proven to be of considerable 
value in providing resul ts  of acceptable accuracy to many three -dimensional problems of 
radiative transfer.  

The one-dimensional transfer problem has special significance in the case of high-
energy corpuscular radiation where secondary production is in predominantly near forward 
angles and transfer calculations a r e  made as if all secondaries proceed in the forward 
direction (straightahead approximation). (See ref. 9.) The multiple-scattering se r i e s  
performs a special function in this case since it reduces the usual integro-differential 
t ransfer  equation into a set  of coupled differential equations. (See refs.  10 and 11.) 
Particular advantage of the multiple-scattering se r i e s  has  been noted in application to 
charged-particle transfer calculations where, because of ionization energy loss,  the series 
has nearly converged after only the double scattering term.  (See ref. 11.) This rapid 
convergence is in spite of the high "albedo" (multiplicities near 3) in these scattering 
events. 

The author wishes to acknowledge his indebtedness to J. W. Wilson of the Langley 
Research Center for  drawing his attention to the relevance of this research to the problem 
of high-energy radiation transfer.  
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SYMBOLS 


D(4 = ~ ' ( 7 )+ ~ ~ ( 7 )  (proportional to photon density) 

I t 
Dn(7) -- F n ( d  + Fn(d 

(fraction of photons at depth T of nth order) 
~ ' ( 7 )+ ~ ~ ( 7 )  

F( 7) = ~ ' ( 7 )- ~ ~ ( 7 ) (net downward flux) 

Ft(T)  upward flux of diffuse radiation 


F T )  downward flux of diffuse radiation 


FA(O) 

FA( T ) ,  FA( 7) 

contribution of nth order  photons to reflected flux divided by incident flux 

contributions of nth order  photons to upward and downward f l u x  divided 
by incident flux, respectively 

contribution of nth order  photons to transmitted flux divided by incident 
flux 

contribution of nth order  photons to reflected flux divided by total reflected 
flux 

contribution of nth order  photons to transmitted flux divided by total 
transmitted flux 

incident flux 

asymmetry parameter  

specific intensity of diffuse radiation 

specific intensity at depth T in direction. of incident radiation 

specific intensity at depth T in direction opposite to incident radiation 
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k =r ( l -w o ) ( l  - gwojy2
L J 

P(P,@ P ' N )  phase function 

k + l - w  
0 

Dirac delta function 

angle to upward vertical  

= COS e 

cosine of angle of incident beam with downward vertical 


normal optical depth 


normal optical depth of homogeneous plane parallel atmosphere 


azimuthal angle 


azimuthal angle of incident beam 

albedo for  single scattering (elastic scattering probability) 

Pr imes  denote variables of integration. 

ANALYSIS 

In considering the contribution of various o rde r s  of scattering to the radiative 
t ransfer  through a homogeneous slab, the following recursive approach is invariably 
adopted. From the intensity distribution of the incident radiation, one calculates the 
intensity distribution of the first-order scattered photons. With this as an input, one 
then determines the intensity distribution of second-order scattered photons and so on. 
When one endeavors to apply this procedure in practice, problems arise. Thus, in the 
transfer through a plane parallel atmosphere, even in the simple case of isotropic 
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scattering, successive integrals become analytically unmanageable beyond the second 
order.  (See ref. 6.) Even in the one-dimensional problem, although the successive 
integrations involve only elementary functions, the expressions become excessively com
,plicated after a few terms.  In  view of this complication, an  alternative approach has been 
adopted in the present paper. For a particular (albeit restricted) c lass  of phase functions, 
the radiative t ransfer  equations can be solved exactly. The problem then reduces to  the 
mathematical one of developing the exact solutions as power series in the particle albedo. 
The successive t e r m s  of such a series development give, of course, the contributions of 
successive orders  of scattering. The more detailed development of this line of attack 
is pursued herein. 

The following equation f o r  the transfer of diffuse radiation through a homogeneous 
slab illuminated f rom above by a parallel beam making an angle cosm1po with the 
downward vertical  is derived in reference 12: 

In this equation cos-1 y is measured from the upward vertical  and the phase 
function is normalized in the sense that 

Integrating equation (1) over Q, yields 

where 
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and 

Bear in  mind that the phase function depends only on the cosine of the angle of scattering 

@ - @ ' e  

One now fur ther  r e s t r i c t s  the phase function to the form 

where wo is the albedo for  single scattering. 1 

By substituting this expression fo r  ~ ( ~ ) ( p , p ' )into equation (2), one obtains 

It is to be noted that the forcing function (last t e rm of eq. (4)) involves Dirac delta func
tions, and this same characterist ic must perforce be imposed on the solutions. Denoting 
the intensity in the direction of the incident radiation by 11(T )  and in the opposite direc
tion by 12(7) yields 

By using equations (4) and (5), the equations giving the downward and upward inten
sit ies are, respectively: 

1In the "one-speed approximation" in neutron transport  theory, wo would be the 
average mu1tiplicity . 

6 


i.. . 



Integrating over their respective hemispheres yields 

and 

By introducing downward and upward fluxes as defined by 

11011(7) = 7TF'b) 

and 

into equations (8) and (9),one a r r ives  finally a t  the pair  of f i rs t -order  l inear differential 
equations 
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and 

In addition, the following boundary conditions are to be imposed: 

F t(T ~ )= 0 

Since the postulated phase function as given by equation (3) requires  that all photons 
be scattered in either the forward o r  the backward direction, not unexpectedly equa
tions (10) to (13) are precisely those governing one-dimensional radiative transfer.  Exact 
solutions for  these equations have been derived by Sobolev (ref. 13). For  the convenience 
of the reader,  these solutions a r e  rederived in appendix A. 

It is of interest  to note that the phase function as given by equation (3) with g = 1 
approximates Mie scattering from large smooth spheres and with g = -1 scattering 
from opaque particles with rough faces  oriented a t  random (ref. 14). 

Throughout the subsequent analysis, po is set  equal to unity (that is, normal 
incidence). However, by simply replacing T by ' / p 0  in any of the results derived 
below, one obtains answers corresponding to the case in which the slab is obliquely 
illuminated at an angle cos-1 po to the downward vertical. 

In appendix A the following expressions a r e  obtained fo r  the overall intensities of 
the downward and upward directed beams at a depth r within a slab of optical thick
ness  T ~ ,particle albedo wo, and asymmetry factor g: 

and 
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where 

and 

k - l + W O  
ro = 

k + l - W O  

Contribution of Successive Orders  of Scattering 

to Reflection From a Semi-Infinite Slab 

By setting T~ = a, in equations (14) and (15), the following expressions for  the 
intensities as a function of optical depth a r e  obtained: 

and 

The reflected flux, divided by the flux of the incident beam, is thus 

By using the se r i e s  development of ro as given in equation (B20), one obtains 

Hence, the contribution of nth order  scattering to the reflected beam (normalized by 
dividing by the incident flux) is given by 
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By setting n = 1, 2, and 3, one obtains the following contributions of the f i r s t  three orders  
of scattering: 

Fir st order:  

Second order:  
n 

Third order:  

These expressions not only define the contribution of successive o rde r s  of scattering but, 
in addition, reveal something of the nature of the scattering processes  that are involved. 
Thus, the presence of the factor 1 - g in expression (22) is a mathematical manifesta
tion of the rather  obvious fact  that the f i rs t -order  photons in the reflected beam have all 
undergone a single rearward scattering. In the case of the second-order photons, the 
presence of the factor (1+ g) ( l  - g) in expression (23) indicates that these have all 
undergone one forward and one rearward scattering (although not necessarily in that 
order).  The third-order photons in the reflected beam are of two kinds corresponding to 
the two t e r m s  of expression (24). The f i r s t  kind embraces  those which have undergone 
two forward scatterings and one rearward scattering and the second kind, those which 
have been subjected to three rearward scatterings. Note that in the emerging beam the 
former  preponderates over the la t ter  by a factor of four. 

Contribution of Different Orders  of Scattering to Photon 

Population at any Depth Within a Semi-Infinite Slab 

The density of photons (D) at a depth 7 is proportional to  F'(7) + Ft(7). Thus, 
f rom equations (18) and (19), 
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D =  Constant I(1 + ro) e-''-e-'\ 
c J 

However, f rom equations (B14) and (B20) 

and 

n 

n=1 

where 
n-1 n 

(-Im 
2 '2 j- 2(n - j - l)lil 7g,J 

r=l m=O m!(r - m)! 
j = O  j!(n - 2j)! 

Substituting equations (26) and (27) into equation (25) yields 

D = Constant e-' 
n=1 n=1 

n-1 
= Constant 2 e-'(.. + Bn + 

n=1 j=1 
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Dividing by  equation (25) yields 

1 =  2 Dnwon 

n=1 

where Dn defines the fraction of photons at depth T which are of nth order  and is 
given by 

n- 1 

An + Bn + 1AjBn-j 

Dn = 
j= l  

(1-k)T - 1 
(1 + r 0 ) e  

Contribution of Various Orders  of Scattering to Reflection From 

and Transmission Through a Finite Slab 

The reflected f l u x  (normalized with respect to the incident flux) is obtained on 
setting T = 0 in equation (15) 

The transmitted flux (normalized a s  above) is obtained on setting T = T~ in 
equation (14) 

Consider the case w o  = 1 (that is, conservative o r  pure elastic scattering). From 
equations (16) and (17) k = 0 and ro = 1 and the expressions (32) and (33) for  the 
reflected and transmitted intensities, assume the indeterminate form O/O. 

In this case let wo = 1 - E where E is supposed to be sufficiently small  to justify 
the neglect of all t e rms  but those involving the lowest order  in E .  Thus, 
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The introduction of these expressions into equation (32) yields 

The introduction of equations (34) into equation (33) yields 

By the substitution of equations (26) and (27) into equations (32) and (33), one can, by 
straightforward procedures s imilar  to those used in the preceding subsection, express  

Ft(0)- and ~ 

F I  (To)  as a power series in wo. Thus, 
FO FO 

(37) 
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By dividing equation (37) by equation (32) w # 1) or by equation (35) (wo = 11, one 
obtains 

( 0  

1= 2 "F(0) won 
n=l 

- t  F p )
where Fn(0) = - and thus defines the fractional contribution of the nth order  photons 

F '(0) 
to the reflected beam. 

Similarly, by dividing equation (38) by equation (33) (for wo # 1) o r  by equa
tion (36) (for wo = l), one obtains 

M 

n=1 

where 

and thus defines the fractional contribution of nth order  photons to the transmitted beam. 

NUMERICAL RESULTS 

The formulas of the preceding section have been used to  make calculations bearing 
on the role played by the various orders  of scattering on reflection from semi-infinite 
slabs and reflection from, and transmission through, s labs  of finite thickness. In this 
section the resul ts  of these calculations are presented and discussed. The effects of 
variation in slab thickness, particle albedo, and asymmetry factor are considered. 

It is of interest  to note that, in practice, both the albedo fo r  single scattering wo 
and the asymmetry factor g are subject to wide variation. Thus, the albedo f o r  single 
scattering can be as high as 0.9999 in clouds. Insofar as the asymmetry parameter  is 
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concerned, this value approaches unity for  Mie scattering from large smooth spheres  
and minus unity for  opaque particles with rough faces  oriented at  random. 

Overall Reflection From Semi-Infinite Slab 

In figure 1 the reflection coefficient is plotted against the asymmetry factor for  
various values of particle albedo wo. As the asymmetry factor increases  (the 
scattering increasing in the forward direction), the impinging photons penetrate deeper 
and, thus, for  particle albedos other than unity, the absorption increases  and the reflec
tion decreases.  When the scattering is entirely in the forward direction (g = l), the 
reflected f lux must, of course, fall to zero.  At a particle albedo of unity, there  is no 
absorption and, since the steady case is being treated and there is no accumulation of 
photons within the slab interior, there must be as many photons emerging as are entering. 
In other words, the reflection coefficient is unity independent of the value assigned to the 
asymmetry factor.  In view of this effect, one would expect the reflection to become 
insensitive to asymmetry factor at  high particle albedos. However, it  is interesting to 
note how large an albedo is needed to produce a reasonable measure of insensitivity to 
the asymmetry factor. Thus, even with a particle albedo as high as 0.99, the reflected 
flux a t  g = 0.8 is only about 75 percent of that at g = -0.8. 

Overall Reflection From and Transmission Through Finite Slabs 

For  the case of conservative (elastic) scattering (wo = 1), as many photons leave 
the slab as enter it, since the time-independent problem is being considered. Thus, 

-7 
Fo = Foe + Ft(0) + F ' ( T ~ )  

The f i r s t  t e rm appearing on the right-hand side corresponds to those photons which pass  
through the slab without undergoing a single scattering. The remaining two t e rms  cor re
spond to those photons which are diffusively reflected from and transmitted through the 
slab, respectively. In the case of thick slabs, the f i r s t  t e rm becomes negligibly small  
and the preceding relation then becomes 

Figure 2 shows dependence of reflection f rom and transmission through a slab of optical 
thickness 0.1 on asymmetry factor f o r  values of particle albedo of 0.2 (0.2) 1.0. Similar 
plots for  slabs of optical thickness 2 and 20 are given in figures 3 and 4, respectively. 
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In figure 4(a), note how sensitive the reflection coefficient f rom a thick slab 
becomes to particle albedo as conservative scattering (wo = 1) is approached. Thus, 
fo r  isotropic scattering (g = 0), an increase of particle albedo from 0.9 to 1.0 resul ts  in 
almost a doubling of the intensity of the reflected beam. Transmission through a slab 
of optical thickness 20 only becomes significant at particle albedos in excess  of 0.9. 
Note how sensitive transmission is to particle albedo at these high values. Thus, again 
considering the case of isotropic scattering, an increase of particle albedo from 0.99 
to 1.0 resul ts  in a doubling of the intensity of the transmitted beam. Note also the sensi
tivity of transmission to asymmetry factor in the neighborhood of g = 1. In the case of 
conservative scattering, an increase in the asymmetry factor  f rom 0.8 to 1.0 resul ts  in a 
threefold increase in transmission. 

Contribution of the First 10 Orders  of Scattering to  

Reflection From a Semi-Infinite Slab 

The contribution of the f i r s t  10 orders  of scattering to  reflection from a semi-
infinite slab is plotted against particle albedo over the range 0.8 to 1.0 for  various values 
of the asymmetry factor  in figure 5. Orders  of scattering in excess  of 10 only play a 
significant role at  the higher albedos. Thus, at  a particle albedo of 0.8, the f i r s t  10 orders  
of scattering contribute more than 90 percent to  the reflected beam for  all values of the 
asymmetry factor. However, at an  albedo of unity and predominantly forward scattering 
(g = 0.9), photons which have been scattered more  than 10 t imes contribute 80 percent 
to the reflected beam. 

Contribution of the First 10 Orders  of Scattering to Reflection From 

and Transmission Through Slabs of Finite Thickness 

The contribution of the f i r s t  10 o rde r s  of scattering to the reflected and t rans
mitted beams is given as a function of slab thickness for  various values of particle 
albedo in figure 6 fo r  the case of predominantly forward scattering (g = 0.8). One notes 
f rom figure 6(a) that insofar as the reflected beam is concerned, the modes of scattering 
in excess of 10 only play a significant role at particle albedos in excess of 0.8 and slab 
thicknesses in excess of 2. Indeed, for  sufficiently thin slabs, only f i rs t -order  scat
tering will contribute. For  a particle albedo of 0.9 as the slab thickness increases 
beyond 2, o rde r s  of scattering in excess of 10 make an increasing contribution. The con
tribution tends to a limiting value as a slab thickness of about 14 is approached. At this 
thickness, the reflected beam is, to all intents and purposes, the same as that for  a semi-
infinite slab. At a particle albedo of unity, and a slab thickness of 20, photons that have 
undergone more than 10 scatterings contribute 50 percent to the reflected beam. Further 
increase of slab thickness wi l l  lead to further enhancement of the contribution of these 
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higher modes of scattering. By referr ing to figure 5, it is to be noted that the limiting 
contribution in this case is about 66 percent. 

By turning to a consideration of transmission (fig. 6(b)), one notes that the o rde r s  
of scattering in excess  of 10 only assume a significant role for  slab thicknesses in excess  
of 2.  As the slab thickness increases,  there wi l l  be, of course, an exponential fall off in 
the transmitted flux. However, of those photons that do emerge, the higher o rde r s  of 
scattering wi l l  make an increasingly important contribution. Thus, the curves, even fo r  
small particle albedos, will tend monotonically to zero. This is simply a manifestation 
of the fact that although for  small  particle albedos the probability of a photon surviving 
more than 10 scatterings is low, for  sufficiently thick slabs the probability of photons 
getting through at  all with 10 o r  fewer scatterings is even smaller.  

Similar plots a r e  presented for  the case of predominantly rearward scattering 
(g = -0.8) in figure 7. Comparison of figures 6(a) and ?(a) and 6(b) and 7(b) indicated, 
by and large, the more important role of the higher o rde r s  of multiple scattering associ
ated with strongly forward scattering. In figure 8 the contributions from o rde r s  of 
scattering in excess  of 1 to reflection from and transmission through a slab of optical 
thickness 0.1 a r e  plotted against particle albedo for  the cases  of predominantly forward 
(g = 0.9) and rearward (g = -0.9) scattering. Even for this thin slab for  g = -0.9 and a 
particle albedo in excess of 0.8, o rde r s  of scattering of 2 o r  higher contribute over 
40 percent to the transmitted beam. Similar plots a r e  presented in figure 9 for  a slab 
of optical thickness 20. In this case the contributions from o rde r s  of scattering in excess 
of 10 a r e  displayed. It is interesting to note that a t  a particle albedo of unity and with 
dominantly rearward scattering, o rde r s  of scattering in excess  of 10 contribute more 
than 99.99 percent to the transmitted beam. 

Dominance of Various Orders  of Scattering With 

Depth in a Semi-Infinite Slab 

In the photon population at any depth, all orders  of scattering a r e  presented. A s  
the depth increases,  the principal contribution wil l  come from increasingly high o rde r s  
of scattering. This is exhibited in figure 10 for  the case of isotropic scattering in which 
the domains of dominance of the various orders  of scattering are charted within a frame
work of particle albedo and optical depth. Thus, for  particle albedos less than 0.2, f i r s t -
order  scattered photons preponderate down to a depth of 6.6. Between 6.6 and 9.4, 
second-order scattered photons provide the dominant contribution and so on. As the 
particle albedo increases ,  the transition from dominance by one order  of scatterin,gt o  
the next as the depth increases  becomes increasingly rapid. Thus, at a particle albedo 
of unity, f i rs t -order  scattering makes the major contribution down to a depth of 2.7; 
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however, by the time a depth of 7.5 is reached, the greatest  contribution comes from 
tenth order  of scattering. 

Dominance of Various Orders  of Scattering Within 

Beams Transmitted Through Finite Slabs 

As the slab thickness increases, the principal contribution to the transmitted beam 
will come f rom increasingly high o rde r s  of scattering. This is illustrated in figure 11 
for  cases  of predominantly forward and rearward scattering, respectively. In each 
instance the domains of dominance by various o rde r s  of scattering are displayed within 
a framework of particle albedo and slab thickness. In figure l l(b) one notes that although 
f i rs t -order  scattering plays a major role for  small  particle albedos and small  slab thick
nesses,  thereafter dominance is invariably by an even order  of scattering. This is a 
manifestation of the fact that fo r  predominantly rearward scattering, the odd o rde r s  of 
scattering are suppressed in the transmitted beam. Further manifestation of this effect 
is found in the plots described in the next subsection. 

Contribution of the Various Orders  of Scattering to Reflection From 

and Transmission Through Slabs of Finite Thickness 

In figure 12, plots are given that show the individual contributions of the first three 
o rde r s  of scattering to reflection from and transmission through a slab of optical thick
ness  0.1 for  albedos of 0.2 and 1.0 with predominantly forward scattering. For this thin 
slab the reflected and transmitted fluxes consist almost entirely of f i rs t -order  photons. 
From figure 13 which corresponds to predominantly rearward scattering, one notes that 
a t  high particle albedos second-order photons contribute as much as 30 percent to the 
transmitted beam. 

Figure 14 displays the contributions of the f i r s t  10 orders  of scattering to  the 
reflection f rom and transmission through a slab of optical thickness 20 for  various par
ticle albedos fo r  the case of predominantly forward scattering (g = 0.8). Insofar as 
reflection is concerned, the contributions of successive orders  are monotonically 
decreasing. However, as the particle albedo increases,  the spectrum becomes pro
nouncedly flatter and subscribes once again to the increasingly important role played by 
all higher modes of scattering at  the higher particle albedos. The curves pertaining to 
transmission, on the other hand, are peaked. Thus, a t  a particle albedo of 0.2, third-
order  scattering contributes most. At a particle albedo of 0.4, it is the seventh order  of 
scattering which preponderates. At particle albedos of 0.6 and higher, the principal con
tribution comes from orders  of scattering in excess  of 10. 
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In figure 15 similar  plots are presented fo r  the case of dominantly rearward scat
tering. In this case it is to be noted that the curves appear to have a jagged o r  saw-
toothed structure.  This  is a fur ther  manifestation of the fact  that with predominantly 
rearward scattering, the even o rde r s  of scattering are suppressed in the reflected beam 
and the odd o rde r s  in the transmitted beam. This is strikingly illustrated in figure 16 
in which plots are given for  a slab of optical thickness 2 and an asymmetry factor of 
g = -0.98. 

Orders  of Scattering Required for Specified Accuracy 

Figure 17 provides plots that define the order  of scattering needed to give an accu
racy of 1percent in the calculation of reflected and transmitted fluxes for a slab of opti
cal thickness 0.1. For  reflection with predominantly forward scattering and transmission 
with predominantly rearward scattering, second-order t e rms  must be included at all but 
the smallest  albedos if the desired accuracy is to be achieved. 

Similar plots ,defining order  of scattering needed for  10-percent accuracy, a r e  
given in  figures 18 and 19 for slabs of optical thickness 2 and 20, respectively, Insofar 
as reflected flux from slab of optical thickness 2 is concerned, the case of predominantly 
forward scattering is the severest  one since higher orders  of scattering a r e  needed to 
achieve the desired precision. Thus,  at a particle albedo as low as 0.2, second order  must 
be included and at high particle albedos, up to fifth order  must be considered. Insofar as 
the transmitted flux is concerned (fig. 18(b)), the roles  are reversed and i t  is the case of 
predominantly rearward scattering which requires the inclusion of the higher orders  of 
scattering. Very high o rde r s  of scattering must be embraced in the case of the thick 
slab (T~ = 20) if the desired precision is to be achieved. For g = 0.9, o rders  of scat
tering in excess of 10 a r e  needed f o r  a particle albedo exceeding 0.8 in the coniputation 
of reflection and fo r  a particle albedo exceeding 0.33 in the computation of transmission. 

CONCLUDING REMARKS 

In the present paper expressions for  the contributions of various orders  of scat
tering to the overall reflection f rom and transmission through slabs of arbi t rary thick
ness,  particle albedo, and asymmetry parameter have been given fo r  the one-dimensional 
case and numerical examples have been calculated. 

The resul ts  presented herein have several  applications. In the first place, they 
will aid in identifying those physical situations - combinations of thickness, albedo, and 
scattering phase function - in which answers of adequate accuracy can be achieved by 
considering only first or second o rde r s  of scattering. If this is known, solutions of 
problems in radiative t ransfer  can be obtained with relative ease. 
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The second a r e a  of application relates  to those situations where the complexity of 
the problem necessitates the use of numerical procedures and where the procedure 
adopted is such that successive iterations define the contributions of the successive 
orders  of scattering. The resul ts  contained herein will permit a preliminary assess
ment to be made of the rapidity of convergence of such series developments and, hence, 
the effort that will be needed in achieving a solution of the desired precision. 

A third area in which methods similar to those discussed herein may find applica
tion is to high-energy radiation transfer in which the high-energy secondaries are pro
duced predominantly forward. However, low-energy secondaries are produced and sub
sequently scat ter  nearly isotropically. The approximation of low-energy propagation by 
means of a one -dimensional isotropic scattering law (asymmetry factor zero) would 
surely produce more realist ic resul ts  than a s t r ic t  straightahead approximation 
(asymmetry factor unity). 

Langley Research Center 

National Aeronautics and Space Administration 

Hampton, Va. 23665 

October 2, 1975 
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APPENDIX A 

EXACT SOLUTION O F  RADIATIVE TRANSFER EQUATION 

IN ONE DIMENSION 

It has been shown in the text that by postulating a phase function of the form given 
by equation (3), that is, 

the equations of radiative transfer in the case of normal illumination po = 1 are given0

by the following equations (eqs. (10) to (13)): 

d F  + g)F t  + (1 - g ) F g  - F w  - g)e- 7  

2 

F'(0) = 0 

=F T ~ )  0 

The addition and subtraction of equations (A2) and (A3) gives 

d ( F I  + Ft) = - (1  - gwo) (F ' - Ft) + Fogwoe-' (A6)dT 

d-(F'- F') = - (1  - wo) ( F ' +  F t ) +  FOwOe-'  (A71dT 

Denote F' + F t  (proportional to energy or  photon density) by D and F' - F' 
(net downward flux) by F and introduce these quantities into equations (A6) and (A7). 
The resul ts  are 
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+ (1 - gwo)F = F o g ~ o e - 7  (A8)
d7 

(A9) 

These two simultaneous linear equations with constant coefficients can be solved by 
using standard procedures. A particular solution is, obviously, 

D = 

F = -Foe-' 1 
By turning to the homogeneous equations, one finds 

~ + ( 1 - g w 0 ) F = OdT 

( ~ - w ~ ) D + ~ = OdF 

D = dekT 

Hence 

These relations require that 

k2 = (1 - w0)  (1 - gwo) 

= 1 - (1 + g)wo + gwo2 
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and the general  homogeneous solution takes the form 

D = dle-kT + d2ekT 1 
In order  to establish the interrelationships between these four constants, it suffices to 
substitute them into equation (A12) 

(1 - uo) (dle-kT + d2ekT) - k(fle-kT - f2ek7) = 0 

Hence 

and 

1 - w(J
f 2 =  

k d2 

By substituting these equations into equations (A14) and adding the particular inte
gral ,  one finds 

D = F ' + F' = dle-kT + d2ekT - (A15) 

The addition and subtraction of equations (Al5) and (A16) gives 

k + l -
F'(T)= dl( 2k 00)e-kT + d2( 

k - l + W O  
) e  

kT 
- Foe''2k 
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The two remaining constants are determined by enforcing the boundary condi
tions (A4) and (A5), 

From equation (A20) 

- 2 k ~ ~
d2 -- -dlroe 

where 

k - 1 + ~ 0  
ro = 

k + l - w O  

Substituting equations (A21) and (A22) into equation (A19) yields 

Hence, 

By inserting these constants into equations (A17) and (A18), one finally obtains for  the 
downward and upward fluxes 
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-kTo
FO ekro - r02e 

and 
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APPENDIX B 

EXPANSION O F  e 
-k 

(
W O ) T  

AND ro(wo)  AS POWER SERIES IN wo 

The functions k(wo) and ro(wo) are defined in equations (A13) and (A22) as 
follows: 

and 

Expansion of e 
-k 

(
W O ) T  

as a Maclaurin Series  in wo 
In the following derivation, use is made of the following expression for  the nth dif

ferential coefficient of a function of a function. 

If y = f ( u )  and u =  @ ( w o ) ,  then 

where nKr is the coefficient of h" in 	 b ( w o  + h) - @ ( w o jr . 
L 

In the present case 

f(u) = f (r)(u) = eU 

where 
\ 

A = l + g  

B = -g 
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Determination of nKr.- The coefficient nKr appearing in  equation (B3) may be 
determined as follows: 

- - A(wo + h) - B(wo + h)? 
1/2 1 

r 
= ~ ~ ( 1- Bwo 2r'2E- Awo - (1 - Ah - s h 2 ) l / ?  (B6) 

where 

- A + 2 w O B  
A =  

1 - AwO - Bug 

The binomial theorem states  that 

m 

(1+ x)' = 1 + c r(r - 1) . . . (r - p + 1),p 
P!p=l  

and when r is an integer, the series is a terminating one and is given by 

(1+ x)' = f r! 
XP 

p! (r - p)!
p=o 

By using equation (B9) in conjunction with equation (B6), one finds 
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Applying the binomial theorem for  nonintegral exponent (eq. (B8)), one finds 

(2)
(1  ;) . . . (P - 1 m 
P 

(1 - A h  - gh2)m’2 = 1 + - .- .- 2 ) ( s h  + Eh2) 
PIp=l  

Making use of equation (B9) results in 

n-1 n 

n - 1  nwhere the upper bound is -2 o r  -2 whichever is an integer. 

4 2
Thus, in the expansion of (1 - Ah - s h 2 )  , the coefficient of hn(n 2 1) is 

given by 

n-1 n 
y 2  ( -E)(1 - E) . . . (n - j - 1 - F) -n-2j-j

2 2 A B 
L j! (n - 2j)!

j=O 

By bearing in mind that nK, is the coefficient of hn in  k(wo+ h) - m(wo)l ,one 

obtains f rom equation (B10) and expression (B12) 
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Maclaurin expansion of e 
-k

(
w 0 ) 7.- The substitution of equations (B4) and (B13) 

into equation (B3) yields 

n-1 n 
I

n n  T(1 - Awo - BwO2)
r/z 

(-lmr! 2 '2 m(m - 2) . . . [m - 2(n - j - 12 j 

r=l  
r! m=O m!(r - m)! .L/ J=o j!(n - 2j)! 

- -
When w o =  0, then k =  1, u =  -7; A =  A =  1 + g  and B = B = -g 

n-1 n _ _  
m(ni - 2) . . . [m - 2(n - j - 13 j 

r=l  m=O j=O j! (n - 2j)! 

Thus, 

where 
n-1 n 

(-)m 
2 '2 

m(m - 2) . . . (A - 2(n - j - j 

r=l m=O 
m! (r - m)! 

j = O  j! (n - 2j)! 
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Expansion of ro(wo)  as a Power Ser ies  in wo 

One may rewrite equation (B2)in the form 

k - (1 - wo)  

' 0  = k + o  

k2 + (1  - - 2k( l  - w o )  
- 

k2 - (1  - wo)2  

However, f rom equation (A13) 

k2 = ( l 
wo)  (1 - gwo) 

By substituting equation (B17) into equation (B16), one obtains 

l - ( v ) : o - k  
ro = 

Setting m = 1 in equation (B11) one obtains 

k = 1 - Aw0 - BW;)~'~i 
n-1 n 

03 

= 1 +2 won 
22'2 (-:) (1 -a)  . . 

~ 

. (n - j - 1 - 1) 
... .~ 2~-*n-2jBj 

n=1 j = O  
j! (n - 2j)! 

n-1 n 
2 '2 

k =  1 - 2(?)n 1 (2n - 2j - 2)! n-2j 

n=1 j = O  
j!(n - 2j)!(n - j - l)! 
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The substitution of equation (B19) into equation (B18) yields 

f n-1 n 

The adoption of s = n - 1 as the running variable gives 

s s+l 
2' 2 

s=1 j= 0 

Case of Isotropic Scattering (g = 0)  

In this case the only nonvanishing t e rm in the second summation corresponds to 
j = 0 and 

r o =  2 wo s (2s)! 
s=1 22SS!(S + l)! 
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Figure 1.- Reflection coefficient (Ft(0)/FO) for  semi-infinite slab 
as a function of asymmetry factor and particle albedo. 
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Figure 2.- Reflection and transmission coefficients for  a slab of optical thickness 0.1 as a function 
of asymmetry factor and particle albedo. 
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(b) Transmission. 
Figure 4.- Reflection and transmission coefficients for  a slab of optical thickness 20 as a function 

of asymmetry factor and particle albedo. 
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by f i r s t  10 orders  of scattering. 
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Figure 6.- Contribution of f i rs t  10 orders  of scattering to reflection from and transmission 
through finite slabs. (g  = 0.8.) 
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Figure 7.- Contribution of first  10 orders of scattering to reflection from and transmission 
through finite slabs. (g = -0.8.) 
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and transmission for a slab of optical thickness 20. 
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Figure 19.- Order of scattering needed to give within 10-percent accuracy. 
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